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OBJECTIVE OF F-TESTS IN MULTIPLE LINEAR REGRESSION

In multiple linear regression (MLR), F-tests play a crucial role in
testing simultaneous hypotheses. F-tests helps to determine if
addition of more predictors has relatively improved the fit.
For example,

◮ A researcher may be interested testing the association of
education and socio-economic variables on suicidal thoughts
when the model already contains treatment, race, and gender.

◮ A nutritionist, who is interested in modeling body fat, may want
to test whether mid-arm circumference should be added to a
model already containing thigh thickness and triceps skin-fold
thickness.

◮ In an HIV Treatment Adherence program researchers are
interested in testing whether alcohol consumption is associated
with treatment adherence while accounting for other predictors.

Such research objectives, under usual assumption of MLR with
complete data, would be addressed via partial F-tests.
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INCOMPLETE DATA

Incomplete data are all too common in applied research which
complicates the task of testing important research questions.

Methods for handling incomplete data include

◮ Complete Case Analysis (CCA)

◮ Single Imputation (Rubin, 1987)

◮ Weighting Schemes (Rubin, 1987)

◮ Maximum Likelihood (Little and Rubin, 2002)

◮ Multiple Imputation (Rubin, 1987)
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MODEL AND HYPOTHESIS

For a data, consider the multiple regression model as follows:

y = Xβ + ε (1)

where

y is a fully observed n dimensional vector,

X is the fully observed n × p matrix of covariates,

β = (βo, β1, · · · , βk)
′ be a p = k + 1 dimensional vector of

unknown coefficients, where βo denotes the intercept, and

ε ∼ Nn(0, σ
2I) with unknown σ2.

H◦ : βi1 = · · · = βir = 0 versus H1: at least one coefficient is non-zero,

where

(i1, · · · , ir) ⊆ (1, · · · , k),

r indicates the number of coefficients, and

i1, · · · , ir denote which coefficient(s) are restricted in H◦.
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THE ISSUE: CONDUCTING PARTIAL F-TESTS WHEN DATA IS

INCOMPLETE

Question: If you have fully observed data then how do you perform
simultaneous tests for regression coefficients in MLR?

Solution: F-tests

Question: If your data has missing values then how do you handle
them?

Solution: CCA, Single Imputation, Multiple Imputation, MLE,
GEE.

Question: If your data has missing values then how do you perform
simultaneous tests for regression coefficients in MLR?

Solution: ???
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F-TESTS FOR FULLY OBSERVED DATA

There are various equivalent ways to define the partial F-test; forms
are usually in-terms of regression sums of squares, error sums of
squares, or coefficient of determination.

If R2
o and R2

1 represent the coefficient of determination under the null
(restricted) and alternative (unrestricted) hypothesis with respective
degrees of freedom dfo and df1, then the partial F-test is defined as

F
R
=

(

df1
dfrestricted

)

R2
1 − R2

o

1 − R2
1

(2)

where dfrestricted is the number of parameters restricted in the null
hypothesis which is always equal to dfo − df1.
Under the null hypothesis F

R
has an F-distribution with degrees of

freedom dfrestricted and df1.
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MULTIPLE IMPUTATION (MI)

Multiple Imputation (Rubin, 1987) is a method for handling missing
data in which each missing value is replaced by (m > 1) values from
the posterior predictive distribution of the missing values given the
observed values.

MI comprises of three stages

1. Imputation: Multiple Imputed data sets (D∗
1 , . . . ,D

∗
m) are created

via an Imputation model.

2. Analysis: Each imputed data is analyzed (Analysis model) using
complete-data techniques for the parameter of interest θ to yield
m point estimates – Q1, . . . ,Qm, and its variance estimates –
U1, . . . ,Um.

3. Combining: results from step 2 for each imputed data are
combined (Rubin, 1987)

In the scenario where Q is not normally distributed, transformations
to approximate normal can be applied, proceeded by combining via
Rubin’s rules.
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COMPUTING R-SQUARE FOR INCOMPLETE DATA VIA MI

Harel (2009) proposed a method to estimate the coefficient of the
determination (R2) from multiply imputed data sets (MIDS).

Suppose R2
o,1,R2

o,2, · · · ,R2
o,m and R2

1,1,R2
1,2, · · · ,R2

1,m denote the
coefficient of determination values under H◦ and H1, respectively,
from the m imputed data sets. Then,

(i) Transform R2
o,j and R2

1,j for j = 1, · · · ,m using Fisher’s

z-transformation.

Qj = 0.5 ln

[

1 + Rj

1 − Rj

]

for j = 1, · · · ,m under H◦ and H1.

(ii) Combine the point and variance estimates using Rubin’s rules.
Let Q̄o and Q̄1 denote the combined point estimates under H◦

and H1, respectively.

(iii) Back transformation Q̄o and Q̄1 to obtain coefficient of
determination for multiply imputed data under the null
(denoted as R2

o) and the relative alternative (denoted as R2
1).
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F-TESTS FOR INCOMPLETE DATA IN MLR SETUP

In light of the estimate the coefficient of determination for incomplete
data (via MI) and equation (2), I propose

F
R
=

(

ν̂1

df◦ − df1

)

R
2
1 −R

2
o

1 −R2
1

(3)

where

R
2
o and R

2
1 are estimates for coefficient of determination from

MIDS under H◦ and H1, respectively, and

ν̂1 is the degrees of freedom estimate corresponding to the model
under H1.

Under the null hypothesis F
R

has an approximate F-distribution with
numerator degrees of freedom df◦ − df1 and denominator degrees of
freedom ν̂1. In estimating ν1, we refer to estimators proposed by
Barnard and Rubin (1999) and Reiter (2007).
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SIMULATION SETUP

Let Dn,k represent the n × k data matrix [y X] corresponding to the
linear model given by (1) with k = 3 predictor variables and sample
size n = 20 for the hypothesis.

Ho : β3 = 0 versus H1 : β3 6= 0

where β3 is the regression coefficient of the 3rd column of X.

1. Generating Data: Dn,k = [y X] ∼ Nn (µ,Σ), where
µ = (20.195, 25.305, 51.170, 27.620)′,
Σ = Σ◦ and Σ = Σ1 is chosen to reflect data coming from the
null (H◦) and alternative hypothesis (H1).

Σ◦ =

[

1 0.843 0.878 0.071
0.843 1 0.924 0.229
0.878 0.924 1 0.042
0.071 0.229 0.042 1

]

Σ1 =

[

1 0.843 0.878 0.427
0.843 1 0.924 0.229
0.878 0.924 1 0.203
0.427 0.229 0.203 1

]

Σ◦ and Σ1 allow for the assessment of Type I (α) and Type II
(β) errors of our proposed method.

SIMULATION STUDY/Simulation Setup 11 of 19



INTRODUCTION PROBLEM OF INTEREST METHODS SIMULATION STUDY Conclusion References

SIMULATION SETUP (CONTINUED...)

2. Introducing Missingness: For a given percentage of missingness
(0 < δ < 1), values in Dn,k are made missing at random (MAR;
Rubin, 1976) as follows: if uδ represent the (1 − δ)100th percentile
of x3 then,

(i) one-half of the cases where x3i
≤ uδ have y missing, &

(ii) the remaining cases have x1 missing

Let D
inc
n,k represent the incomplete data after Dn,k is subjected to

the above missingness mechanism.

Values for percentage of missingness considered are:
δ = 5, 10, 15, 20, 30, 40, 50.
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SIMULATION SETUP (CONTINUED...)

3. Imputation: We assume MAR and multivariate joint normal
posterior predictive imputation model based on all the data
variables.

4. Analysis: For the hypothesis of interest,

(i) for Dn,k, F
R

is evaluated using (2),

(ii) for D∗
1 , . . . ,D

∗
m, F

R
is evaluated using (3).

5. Number of Simulations (N): Steps 1 to 4 where repeated 1000
times.
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SIMULATION RESULTS

δ (%)

Observed Type I error (α̂) from N = 1000 simulations, using

F
R

from MI with
F

CCA

R
F

R
Type m = 5 m = 25 m = 50 m = 100 m = 250 m = 500 m = 1000

5
BR 0.064* 0.057** 0.063* 0.062* 0.054** 0.061* 0.058*

0.053**

0.057

Rt 0.196 0.053** 0.057** 0.056** 0.051** 0.056** 0.051**

10
BR 0.081* 0.065* 0.072* 0.077* 0.078* 0.079* 0.078*

0.046**
Rt 0.218 0.057** 0.056** 0.070* 0.070* 0.062* 0.062*

15
BR 0.052** 0.046** 0.042** 0.037** 0.040** 0.041** 0.040**

0.045**
Rt 0.174 0.044** 0.040** 0.033** 0.038** 0.040** 0.039**

20
BR 0.067* 0.046** 0.044** 0.051** 0.045** 0.046** 0.046**

0.044**
Rt 0.178 0.042** 0.038** 0.047** 0.040** 0.043** 0.042**

30
BR 0.034** 0.047** 0.050** 0.056** 0.057** 0.056** 0.054**

0.047**
Rt 0.130 0.040** 0.044** 0.049** 0.052** 0.047** 0.049**

40
BR 0.024** 0.066* 0.072* 0.069* 0.058* 0.058* 0.063*

0.049**
Rt 0.076* 0.053** 0.050** 0.047** 0.041** 0.041** 0.044**

50
BR 0.062* 0.049** 0.068* 0.047** 0.049** 0.041** 0.049**

0.052**
Rt 0.140 0.035** 0.042** 0.028** 0.028** 0.025** 0.026**

** α̂ values ≤ α̂F
R

* α̂F
R

< α̂ values ≤ 0.10

Table: Comparison of observed Type I errors of F-statistics corresponding to
(i) fully observed data (F

R
),

(ii) complete case analysis (F
CCA

R
), and

(iii) our proposed MI based method (F
R

),
when H◦ is true for the set-up where y and x1 are missing based on values of x3.
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SIMULATION RESULTS (CONTINUED...)

δ (%)

Observed Power (1 − β̂) from N = 1000 simulations, using

F
R

from MI with
F

CCA

R
F

R
Type m = 5 m = 25 m = 50 m = 100 m = 250 m = 500 m = 1000

5
BR 0.631** 0.553** 0.560** 0.557** 0.533** 0.536** 0.560**

0.543**

0.635

Rt 0.819** 0.541** 0.554** 0.547** 0.524** 0.521** 0.547**

10
BR 0.438 0.506* 0.545** 0.512** 0.531** 0.537** 0.545**

0.466*
Rt 0.637** 0.467* 0.524** 0.491* 0.508** 0.519** 0.529**

15
BR 0.511** 0.596** 0.545** 0.541** 0.564** 0.565** 0.563**

0.399
Rt 0.718** 0.588** 0.532** 0.524** 0.551** 0.559** 0.553**

20
BR 0.480* 0.563** 0.504* 0.530** 0.560** 0.551** 0.560**

0.337
Rt 0.665** 0.550** 0.476* 0.516** 0.545** 0.539** 0.549**

30
BR 0.474* 0.527** 0.526** 0.530** 0.543** 0.520** 0.536**

0.248
Rt 0.682** 0.505* 0.512** 0.511** 0.524** 0.504* 0.515**

40
BR 0.428 0.567** 0.521** 0.518** 0.526** 0.525** 0.521**

0.183
Rt 0.567** 0.549** 0.502* 0.491* 0.495* 0.485* 0.488*

50
BR 0.507* 0.479* 0.470* 0.450* 0.443 0.423 0.449*

0.139
Rt 0.634** 0.425 0.414 0.382 0.372 0.357 0.377

** Power values ≥ 80%

(

1 − β̂F
R

)

.

* 70%

(

1 − β̂F
R

)

≤ Power values < 80%

(

1 − β̂F
R

)

.

Table: Comparison of observed power values of F-statistics corresponding to
(i) fully observed data (F

R
),

(ii) complete case analysis (F
CCA

R
), and

(iii) our proposed MI based method (F
R

),
when H1 is true for the set-up where y and x1 are missing based on values of x3.
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Figure: Comparison of range of observed overall error of the three statistics (from CCA and MI)
over all missing percentages when number of imputations m ≥ 25 and sample size n = 20.
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CONCLUSION

1. The proposed MI based methods (BR and Rt) have their
minimum overall errors (0.45 each) lower than the minimum
overall error of CCA (of 0.51), and are much closer to the overall
error for fully observed data (0.422).

2. Maximum observed error (Type I or Type II) with
◮ CCA is 91%.

◮ MI based method using BR and Rt are 64% and 67%, respectively.

◮ CCA at the most is 1.5 times more likely to make wrong decision
than our proposed MI based methods.

3. The range for observed overall error
◮ is largest for CCA (0.913 − 0.510 = 0.403).

◮ for MI based method using BR (0.643 − 0.450 = 0.193) and Rt
(0.668 − 0.448 = 0.220) is about one-half of CCA.
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CONCLUSION (CONTINUED...)

4. In comparison to the CCA, the probability of making an error is
reduced by one-half in our proposed MI based methods.

5. These overwhelmingly positive results of MI based methods
correspond to an extreme simulation setting (with small sample
size, low power, severe type of missingness) thereby implying
that our proposed method’s performance will ONLY improve
with

◮ increasing sample size,

◮ increasing distance between µ1 and µ
◦
,

◮ decreasing percentage of missingness, and

◮ increasing distance between F-statistic (under null hypothesis) and
its corresponding F-critical value.
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