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 
Can be expected in many contexts when making 

repeated measurements 

 Development of a skill set or perceptual ability (e.g., 
cognitive functioning; Salthouse et al., 2004) 

 

Cause apparently conflicting effects of age/time 

 Cross-sectional results show declining performance 

 Longitudinal results show improved performance 

Practice Effects 



 
When studying longitudinal development of a skill: 

 Using different tests on each occasion  would 
confound skill development with the test specifics 

 Using the same test would confound skill 
development with practice 

 

Can study change using multiple tests on each 
occasion as indicators of a latent construct 

 Interested in the latent mean, not in a particular test 

Practice Effects 







 
 If indicators are subject to practice effects, those 

effects can manifest in the latent means 

 Strong invariance constraints are required to infer 
changes in the latent mean 

Using a 3-form planned missing data design 

 Participants see only a subset of indicators 

 Indicators seen less often on consecutive occasions 

 Practice effects fade at greater lags (Salthouse et al., 2004) 

 Missing data patterns can be used as predictors of 
practice effects 

Practice Effects in SEM 





Assignment Strategy Order of Forms 

Indicators seen consecutively on: 

Occasion 2 Occasion 3 

Different forms over time AB–AC–BC A C 

  AC–BC–AB C B 

  BC–AB–AC B A 

Same forms over time AB–AB–AB AB AB 

  AC–AC–AC AC AC 

  BC–BC–BC BC BC 

Missing Data Patterns Across Conditions 



 
Using SEM, 3-form design to study change allows us 

to separate effects of time from practice 

 Assign different forms over time to minimize variables 
seen on consecutive occasions 

 Missing data patterns (dummy variables) indicate 
whether each participant sees an item on consecutive 
occasions 

 Regressing items on these indicators allows the 
practice effect to be estimated 

Modeling Practice Effects 





 
 Problem: 

 3 missing data patterns are multicollinear 

 Any dummy variable is a combination of the other two 

 D1 = 1 − (D2 + D3) 

 Using only 2 dummy variables (treating the 3rd as a 
reference group) would not remove practice effects for 
the third group 

 Solution: 

 Add a fourth group (10% from each,  or gather new 
participants) who do not see any items consecutively 

 e.g., reference group sees only Form A, then B, then C 

Modeling Practice Effects 



Groups based on random 

assignment 
Order of Forms 

Indicators seen consecutively on: 

Occasion 2 Occasion 3 

Typical groups using a AB–AC–BC A C 

 3-forms design AC–BC–AB C B 

  BC–AB–AC B A 

Additional group NO 

expected practice effects 
A – B – C — — 

Missing Data Patterns with a 4th (Reference) Group 



 

Method 

 3-factor CFA (construct measured at 3 times ) 
 6 indicators (2 for each planned-missing form) 

 Factor means and variances = 0 & 1 

 Factor correlations = 0.5 (lag 1) and 0.25 (lag 2) 

 Factor loadings = 0.7  
 Residual variances = 1 − 0.72 = 0.51 

 Residual correlations = 0.2 (lag 1) and 0.04 (lag 2) 

 Indicator means = 0 
 unless the indicator was seen on the previous occasion 

 Practice effect: indicator mean increased by 0.1 
 Standard normal variables, so Cohen’s d = 0.1 (small effect) 



 

2 × 2 × 2 Design 

 2 assignment methods  
 Subjects assigned to same or different forms over time 

 Extra coefficients to estimate practice effect 
 If no, missing-data-pattern indicators excluded from 

model on next slide (i.e., CFA only) 

 Extra participants for reference group 
 If no, only 2 of the 3 missing data patterns were used to 

estimate practice effects; N = 270 (n = 90 in each group) 

 If yes, additional n = 30 participants without practice 
effect (i.e., they never saw the same indicators twice) 

 1000 replications in each of 8 conditions 



 

Results 

 Because the true latent mean = 0 across time, any 
nonzero estimate indicates contamination 

 

Only 1 condition with zero contamination 

 Different forms, extra participants, extra coefficients 

 Minimal contamination even without extra participants 

 

Rejection rates for H0: latent mean = 0 

 Highest for same forms 

 Different forms with extra coefficients: ≤ 6% 





Assignment Strategy 

Extra 

Coefficients 

Extra 

Participants 

Occasion 2 Occasion 3 

Mean Rejection Mean Rejection 

Different forms No No 0.07 17% 0.08 15% 

    Yes 0.07 15% 0.08 14% 

  Yes No 0.02 6% 0.02 6% 

    Yes 0.00 6% 0.00 5% 

Same forms No No 0.14 50% 0.28 91% 

    Yes 0.13 45% 0.26 89% 

  Yes No 0.15 33% 0.28 74% 

    Yes 0.10 15% 0.22 44% 

Latent Means and Rejection Rates Across Conditions 



 
 To prevent practice effects from contaminating 

estimates of latent means 

 Use a multiform planned missing design  

 Assign participants to different forms over time 

 Estimate practice effects using missing data patterns 

 Include a small reference group with no (or minimal) 
expected practice effects 

 Excluding the extra reference group seemed to work well in 
this simulation, when the other 2 conditions were satisfied 

 CAVEAT: Using extra coefficients without extra participants 
results in failing tests of strong invariance 

Conclusion 



Rates of Passing Tests of Strong Invariance 

Note. Cheung & Rensvold (2002) proposed ΔCFI < 0.01, whereas 
Meade, Johnson, & Braddy (2008) proposed ΔCFI < 0.002. 

    Extra Coefficients 

Extra Participants Criterion Yes No 

Yes Δχ2(df = 10, α = .05) 94.8% 93.4% 

  ΔCFI < 0.01 99.8% 97.8% 

  ΔCFI < 0.002 96.2% 78.0% 

No Δχ2(df = 10, α = .05) 38.4% 94.0% 

  ΔCFI < 0.01 72.6% 97.0% 

  ΔCFI < 0.002 43.8% 77.4% 





 
Only investigated a small practice effect, with no 

true change in the latent mean 

 Recover true change when there is true change? 

 Recover true change when effect is more persistent? 

 Strong invariance when practice effects are larger? 

 Vary magnitude of true change and practice effect 

 Extend panel model to latent growth curve 

 Recover true slope when practice effects estimated? 

 Infer incorrect functional form (linear/quadratic) 
when practice effect contaminates latent means? 

Future Research 
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 

I’m happy to share these slides. 
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