
How do we combine two treatment arm 

trials with multiple arms trials in IPD meta-

analysis?

An Illustration with College Drinking 

Interventions

David Huh, PhD1, Eun-Young Mun, PhD2, & David C. Atkins, PhD1

1 Department of Psychiatry & Behavioral Sciences, University of Washington 

2 Center for Alcohol Studies, Rutgers, The State University of New Jersey

Modern Modeling Methods Conference
May 20, 2014

Supported by NIAAA grants
R01 AA019511
T32 AA007455

1/29



IPD opens the door to new possibilities…

� Meta-analysis of individual participant-level data (IPD) opens  
the door to a greater variety of research hypotheses that can 
be tested, yet it’s rarely done in the social sciences.

� Provides a means of combining information across studies 
more accurately.
� Compared with traditional methods based on summary statistics, 

IPD-based meta-analysis can be more flexibility tailored to the 
characteristics of the data and study designs.

� A challenge in meta-analysis†, including with IPD:
How to combine studies with varying numbers of treatments.
� Most randomized trials (> 78%) are two arm studies‡, however, 

multiple arm trials are not uncommon.
� Little discussion in the IPD meta-analysis literature about how to 

combine studies with varying numbers of arms.

†Gleser & Olkin, 2009; ‡ Hopewell, Dutton, Yu, Chan & Altman, 2010
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IPD meta-analysis can accommodate 

varying arms and other data characteristics

� The appropriate combination of studies with varying 
numbers of arms was a key consideration in an IPD meta-
analysis that our research group (Project INTEGRATE)†

undertook of college drinking interventions.

� Other important analytic issues:
� Differing number of assessments

� Confounders and moderators of intervention outcome

� Normally-distributed and zero-inflated count outcomes

� Ultimately settled a novel formulation of a Bayesian 
multilevel model that retained all the available data and 
accommodated differing numbers of treatment groups.

† Mun et al., 2014
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A real-world application with drinking 

interventions

� For over two decades, brief motivational interventions (BMIs) have 
been implemented on college campuses to reduce heavy drinking 
and related negative consequences.
� Recommended as a prevention strategy by the National Institute on 

Alcohol Abuse and Alcoholism (NIAAA).†

� Such interventions include:
� In-person motivational interviews with personalized feedback (MI+PF)
� Group motivational interviews (GMI)
� Stand-alone PF interventions delivered via mail, computer, or the Web.

� Meta-analytic reviews using aggregate data from published studies 
suggest their short-term efficacy, but the effects vary.
� Carey and colleagues‡ found that across 62 studies, 50% of tests of 

intervention outcomes were statistically significant.
� Significant findings were associated with small effect sizes.

† NIAAA, 2002; ‡ Carey , Scott-Sheldon, Carey, DeMartini, 2007
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Building on previous systematic reviews 

with IPD meta-analysis

� Systematic reviews to-date have limitations

� Effects at different time-points evaluated with different subsets of 
studies.

� Moderators evaluated at the study-level (e.g., % female vs. male).

� Alcohol outcomes are often highly skewed with many zeroes.

� Both Gaussian and traditional count models under-represent the actual 
frequency of zeroes.†

� More analytic options with IPD compared with classical meta-
analysis using aggregate data.

� Ability to control for participant-level covariates.

� Model can be easily extended to evaluate individual-level moderators.

� Distribution-appropriate analysis

† Atkins, Baldwin, Zheng, Gallop, & Neighbors, 2013
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Important to attend to excess zeroes…

� Distribution of the data is another important consideration.

� Behavioral outcomes assessing short intervals will often contain a lot 
of zeroes.

� Substance use

� Sexual behavior

� Zeroes may be a key feature 
of the outcome and not just a 
nuisance of the data.

� An intervention may have an effect on either:

� The decision to drink (zero drinks vs. 1 or more drinks)

� The number of drinks once started (1, 2, 3, …)
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What IPD meta-analysis options are 

available?

� Two-stage IPD meta-analysis
� The most common†

� Raw data are converted into standardized effect sizes.
� For continuous data (d and g)

� For dichotomous and count data (OR,  RR)

� Standardized effect sizes are pooled.

� Single-stage IPD meta-analysis
� We have the raw data, why not use it?

� Less variation in IPD-generated estimates, thus greater power.

� Participant-level covariates can be incorporated.

� Greater variety of statistical models at our disposal.

† Cooper & Patall, 2009 

7/29



Accounting for zero-inflated outcomes using 

a hurdle model

� Hurdle models, a type of two-
part model are appropriate for 
zero-inflated count data, such as 
drinking.†

� A threshold must be crossed 
from zero into positive counts.

� The outcome is effectively 
divided into two parts.
� No drinking vs. any drinking:

� Logistic regression

� Amount of drinking when 
drinking:
� Zero-truncated Poisson or 

Negative binomial regression

† Huh, Kaysen, & Atkins, 2014
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An example with longitudinal IPD

� Project INTEGRATE
� One of the largest IPD meta-analysis projects to-date evaluating brief 

motivational interventions for college drinking.†,‡

� Focused on randomized controlled studies evaluating one or more 
BMIs:
� Individual Motivational Interview with Personalized Feedback

� Standalone Personalized Feedback
� Group Motivational Interview

� IPD sample included 17 studies of 8,275 individuals
� 14 two-arm studies

� 2 three-arm studies

� 1 four-arm study

� 2 – 5 repeated measures up to 12 months post-baseline

† Mun et al., 2014; Huh et al., 2014
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The longitudinal drinking outcomes

� Total drinks in a typical week

� Daily Drinking Questionnaire (DDQ)†

� Zero-inflated count variable.

� Alcohol Problems

� Six questionnaires used to derive latent trait scores.

� E.g., Rutgers Alcohol Problem Index (RAPI),  Alcohol Use Disorders 
Identification Test (AUDIT)

� Relatively normally-distributed outcome

† Collins et al., 1985
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Frequencies of Drinks per Week by Study
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The Analytic Approach Used…

� Bayesian Multilevel Modeling (MLM)†

� Markov-chain Monte Carlo estimation

� MCMCglmm package in R‡,*

� Permitted distribution-appropriate analysis

� Hurdle Poisson model for zero-inflated drinking outcome

� Logistic regression

� No drinking vs. any drinking

� Truncated Poisson regression

� Number of drinks when drinking

� Gaussian Model for alcohol problems outcome

� Relatively normally-distributed

† Gelman & Hill, 2006; ‡ Hadfield, 2010; * R Core Team, 2013 
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Why Bayesian and not maximum likelihood 

estimation?

� MCMC sampling yields a complete distribution of the regression 
coefficients and random effects, rather than a single point 
estimate for each parameter in an ML (frequentist) model.

� Why this is important:

Random effects for each treatment group can be estimated with 
uncertainty (i.e., confidence intervals).
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The first model attempted: A 3-level model

(3: Study � 2: Participant � 1: Observation)

OUTCOME��	,�� =

�	 + ��OUTCOME��	,�� + ��COVARIATE�� + ��MI_PFP�
+ ��PFP� + ��GMI� + �	� + ���MI_PFP� + ���PFP�
+ ���GMI� + �	�� +  ���

� Study is the highest level of the model.

� Study-specific treatment effects (random slopes) are 
included for each distinct intervention type.

� This model has intuitive appeal.
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Illustrating with Project INTEGRATE
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� Problem: Not all treatments evaluated in each study, so the 
resulting model is rank deficient.

� 51 possible treatment by study combinations
� 30 combinations (59%) don’t exist.

� Model does not converge using diffuse default priors. 
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The model with study at the highest level 

doesn’t work, what are our options?

� Keep the model as-is, but use a more informative prior for the 
random effects.
� Is it worth that much effort to get the model to work?

� Informative priors have their critiques and drawbacks.

� Pool active intervention conditions within a study or remove 
one or more conditions.
� Reduces each study to a 2-arm RCT design.

� Potential loss of information

� Exclude the non-existent study by treatment 
combinations that are making the model rank 
deficient.
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Defining study × randomized group at the 

highest level

� The highest level of the model is study by randomized group
rather than study.
� Preserves the randomization within studies in the model.

� There is no fixed effect for treatment.
� Intervention effect sizes are calculated from the posterior 

distribution of the randomization group random effects.

Study 21Study 7.1 Study 7.2Study 2 Study 22…

MI+PF PF CTRL MI+PF CTRLPF CTRL GMI CTRL GMI CTRL

Study

Study x
randomized group
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The Basic Model: Similar to an ANCOVA

� OUTCOME��	,�� =

�	 + ��OUTCOME��	,�� + ��COVARIATE�� + �	� + �	�� +  ���

Baseline value
of the outcome

Additional
covariate(s)

Unique randomization 
group random effect

Participant
random effect

Residual
error

Post-baseline values 
of the outcome

t = repeated measure
i = individual
g = unique randomization group
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Unique randomization group random effects 

includes intervention and control groups
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Calculating the intervention effect

� The key estimates of interest are the samples from the posterior 
distributions of the random effects for randomization group.

� Each random effect has its’ own distribution of samples.

Fixed effects Randomization group effects

Study 2 … Study 21

(Sample) b0 b1 u1 u2 … u34 u35 u36

1 -0.037 0.670 -0.036 -0.037 -0.070 -0.137 -0.088

2 -0.008 0.675 -0.167 -0.191 -0.009 -0.047 -0.055

3 -0.072 0.680 -0.001 0.100 -0.050 -0.020 0.012

2000 -0.039 0.660 -0.145 -0.023 -0.019 -0.032 0.062

Intervention
(PF)

ControlControl Intervention
(MI+PF)

Intervention
(PF)

… … … … … … … …
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Calculating the intervention effect (cont.) 
� Example:  The intervention effect in Study 2.

� Three steps to calculating the effect size for a treatment group
1. Identify the posterior draws from the random effect for an intervention group and its’ 

corresponding control group.

2. Take the difference (uintervention – ucontrol).

3. Calculate the mean and 95% confidence interval of that difference.

� Repeat for all other intervention groups.

Study 2

Intervention Control Effect Size

(Sample) u1 u2 u1 - u2

1 -0.036 -0.037 0.010

2 -0.167 -0.191 0.240

3 -0.001 0.100 -0.999

2000 -0.145 -0.023 -0.122

… … … …
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Forest Plot for Drinks per Week (Hurdle)

MI = Individual Motivational Interview, PF = Standalone Personalized Feedback,

MI + PF = MI with Personalized Feedback, GMI = Group Motivational Interview 
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Forest Plot for Alcohol Problems (Gaussian)

MI = Individual Motivational Interview, PF = Standalone Personalized Feedback,

MI + PF = MI with Personalized Feedback, GMI = Group Motivational Interview 
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Discussion

� Wide variation of intervention effects on alcohol outcomes is 
generally consistent with results from meta-analyses based on 
summary statistics.

� When alcohol outcomes are modeled in a distribution-appropriate 
analysis, intervention effects in most studies are non-significant.

� Across studies, there are small, statistically non-significant reductions 
in alcohol consumption and negative consequences.

� Bayesian MLM using study by randomization group as the 
highest level of the model was a practical approach to 
combining studies with varying numbers of treatment arms.

� Avoids the need to collapse intervention conditions or discard data.
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Discussion (cont.)

� Allowed the calculation of effect sizes for:
� Individual intervention groups

� Across all interventions

� For specific intervention types (not shown)

� Weighting of the intervention estimates was handled within 
the multilevel model.
� The IPD is weighted within the likelihood distribution.

� The precision of the estimates is proportional to the amount of 
contributing data.

� The detailed approach is generalizable to outcomes beyond 
alcohol use.
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Analysis of non-normal outcomes not 

trivial…

� Bayesian MCMC estimation required a good deal of 
computing time, especially for the non-Gaussian model.

� Gaussian model of alcohol problems: < 1 hour

� Hurdle model of drinks per week: 36 hours
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Next steps…

� Conduct a simulation study comparing results of the 
Bayesian MLM approach used in the present study with 
summary-statistic based meta-analysis.

� How biased are estimates using summary statistic based 
methods that assume normal distribution?
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Questions?

� For post-conference questions, contact:

� David Huh (dhuh@uw.edu).
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